

51.2V 25.6V 280Ah 7.5 14.5 KWh

DATASHEET

Contents

*		Why lithium-iron-phosphate?
	Eff	ficient3
	Siz	ze and weight3
	Ex	pensive?
*		Features
*		Parameters4
*		Battery handling
	1.	Stop/Transport Mode:
	2.	Working Mode:5
	3.	Sleep Mode:5
	4.	Error Mode:
	5.	In an Over-discharge/Short circuit current case:5
*		COMMUNICATION UNIT
	*	Hibernate and wake up7
	*	DIP switch settings
	*	Communication pin-out
*		HMC WIFI dongle:
*		Performance Curve (51.2Vmodel)
*		Dimensions

HMC-LFP Power Wall Series

HMC Power Solution delivers safe lithium iron phosphate batteries solutions for all types of applications.

Why lithium-iron-phosphate?

Lithium-iron-phosphate (LiFePO4 or LFP) is the safest of the mainstream li-ion battery types. The nominal voltage of a LFP cell is 3,2V (lead-acid: 2V/cell). A 12,8V LFP battery therefore consists of 4 cells connected in series; and a 25,6V battery consists of 8 cells connected in series and so on. A LFP battery does not need to be fully charged. Service life even slightly improves in case of partial charge instead of a full charge. This is a major advantage of LFP compared to lead-acid.

Other advantages are the wide operating temperature range, excellent cycling performance, low internal resistance and high efficiency (see below).

LFP is therefore the chemistry of choice for demanding applications.

Efficient

In several applications (especially off-grid solar and/or wind), energy efficiency can be of crucial importance.

The round-trip energy efficiency (discharge from 100% to 0% and back to 100% charged) of the average lead acid battery is 80%.

The round-trip energy efficiency of a LFP battery is more than 92%

The charge process of lead-acid batteries becomes particularly inefficient when the 80% state of charge has been reached, resulting in efficiencies of 50% or even less in solar systems where several days of reserve energy is required (battery operating in 70% to 100% charged state).

In contrast, a LFP battery will still achieve 90% efficiency under shallow discharge conditions.

Size and weight

Saves up to 70% in space Saves up to 70% in weight

Expensive?

LFP batteries are expensive when compared to lead-acid. But in demanding applications, the high initial cost will be more than compensated by longer service life, superior reliability and excellent efficiency.

Features

- Built-in automatic protection for over-charge, over-discharge, short circuit and over/under temperature conditions.
- State of charge indication (SOC).
- Internal cells balancing.
- Compatible with most solar and backup systems.
- Maintenance free.
- Real local warranty with 3 working days repair time at the repair shop.

Parameters

Parameter			HMCLFPEA4828015K	HMCLFPEA242807K			
0	utpu	t Voltage	44.8-56.8	22.4-28.4			
Cells count			16	8			
	Cells	grade	A+				
Nomii	nal co	apacity(25°C,0.5C)	2804	\h			
ŀ	Real a	capacity	More than	n 300Ah			
Energy		Nominal energy	14.33 KWh	7.2 KWh			
Dimensions	,	Weight (Approximate)	2x54Kg	55kg			
Dimensions	Wi	dth*Depth*Height	77*24*57	77*24*30			
	Impe	edance	<30n	nΩ			
Standard	Ma	x. constant current	120	Α			
Discharge		Peak current	140	Α			
@25°C		Cut-off voltage	45V	22.5V			
		Inverter cut-off voltage	48V	24V			
	Βι	Ik charge Voltage	~56.8V	~28.4V			
Standard	Ma	x. constant current	85A				
<i>charge</i> @25℃	Recommended charging current and time		55A (0.2C) for 5 hours				
Rouna		efficiency (%)	>99% >10 years				
		ctancy@25°C					
	-	fe (0.2C, 25°C)	6000 cycles @80% DOD				
		rating temperature	Charging: 0°C~55°C				
Pacamman	d cto	orage temperature	Discharging: -5°C~55°C				
		Warranty	Recommended range: 0°C~55°C				
			5 years over cells, one year over the BMS 10 YEARS				
SERVICE AVAILABILITY PERIOD HMC WIFI DONGLE			YES				
		HMC	YES (VOLTRONIC – GROWATT – DEYE – BLUE SUN –				
	-	COMMUNICATION	CROWN AND MORE)				
COMPATIBIL	ITY ¹	HMC ADVANCED PARALLEL ROUTER	YES / 15 units in parallel				
		Extended display	YES	5			

¹ Extra charge may be applied

Battery handling

1. Stop/Transport Mode:

In working mode, turn off the switch (press in), the battery will go to STOP mode with low self-discharge. In STOP mode, charging MOS and discharging MOS are turned off, and the battery cannot charge or discharge.

2. Working Mode:

turn on the switch (press out) and press the SOC display button for 3 seconds, or simply connect to the charger or the load, the battery will auto wake up and go to working mode.

In working mode, BMS will monitor battery voltage, current, and temperature and if communication is available, the battery will operate as the settings.

3. Sleep Mode:

After turning on the battery, if the battery voltage is below low voltage protection, BMS will go to sleep mode in 1 minute. In sleep mode, charging MOS and discharging MOS are closed BMS will check the current every 1 Min, if there is a charging current connected, the battery will automatically switch to working mode.

4. Error Mode:

In working mode, if there are:

Any cell voltage \geq 3.8V or < 2.5V

Battery temperature is <-5 °C or +60 °C.

BMS will go to error mode, SOC display will shut down, and go to STOP mode, charging MOS and/or discharging MOS are turned off.

5. In an Over-discharge/Short circuit current case:

The battery should be disconnected for 10 seconds and then reconnected. A DC CIRCUIT BREAKER is highly recommended to simplify the disconnection.

COMMUNICATION UNIT

state	normal/a <mark>l</mark> arm/	ON/ OFF	RUN	ALM		Ba	ttery inc	dicator I	ED		Directions		
	protect	•	•	•	•	•	•		•	•			
shutdown	Hibernate	Off	Off	Off	Off	Off	Off	Off	Off	Off	Annihilate		
	Normal	on	flash 1	Off							Standby mode		
Standby	Alert	on	flash 1	flash 3	Α	ccordin	g to the	Module low voltage					
	Normal	on	on	Off						2	The highest power LED		
	Alert	on	on	闪3	anes conerc				icator (I) flashe		flashes (flashing 2), and the ALM does not flash when the overcharge alarm occurs		
Charge	Over voltage protection	on	on	Off	on	on	on	on	on	on	If there is no utility power, the indicator turns to standby state		
	Temperature, over current, short circuit, reverse connection, fail-safe	on	Off	on	Off	Off	Off	Off	Off	Off	Stop charge		
Discharge	Normal	on	flash 3	Off	According to the battery indicator								
	Alert	on	flash	flash					-				
	Under voltage protection	on	Off	Off	Off	Off	Off	Off	Off	Off	Stop discharge		
	Temperature, over current, short circuit, reverse connection, fail-safe	on	Off	on	Off	Off	Off	Off	Off	Off	Stop discharge		
invalid		Off	Off	on	Off	Off	Off	Off	Off	Off	Stop charging and discharging		

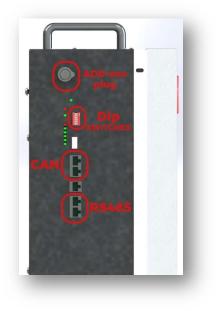
Table 1 LED working status indication

Table 2 Description of capacity indication

sta		Charge					Discharge						
capacity	indicator	L6•	L5•	L4•	L3•	L2•	L1•	L6	L5•	L4•	L3•	L2•	L1
	0~16.6%	Off	Off	Off	Off	Off	flas h 2	Off	Off	Off	Off	Off	on
	16.6~ 33.2%	Off	Off	Off	Off	flas h 2	on	Off	Off	Off	Off	on	on
SOC (*)	33.2~ 49.8%	Off	Off	Off	flas h 2	on	on	Off	Off	Off	on	on	on
SOC (%)	49.8~ 66.4%	Off	Off	flas h 2	on	on	on	Off	Off	on	on	on	on
	66.4~ 83.0%	Off	flas h 2	on	on	on	on	Off	on	on	on	on	on
	83.0~ 100%	flas h 2	on	on	on	on	on	on	on	on	on	on	on
Operation	indicator			C	n					flash (flash 3)	

Table 3 LED flashing description

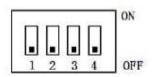
flashing method	on	off
Flash 1	0.25\$	3.75S
Flash 2	0.5S	0.5S
Flash 3	0.58	1.5S

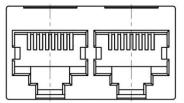

✤ Hibernate and wake up

Hibernate

The interface board itself does not have a sleep function. If the BMS sleeps, the interface board will shut down.

Wake up

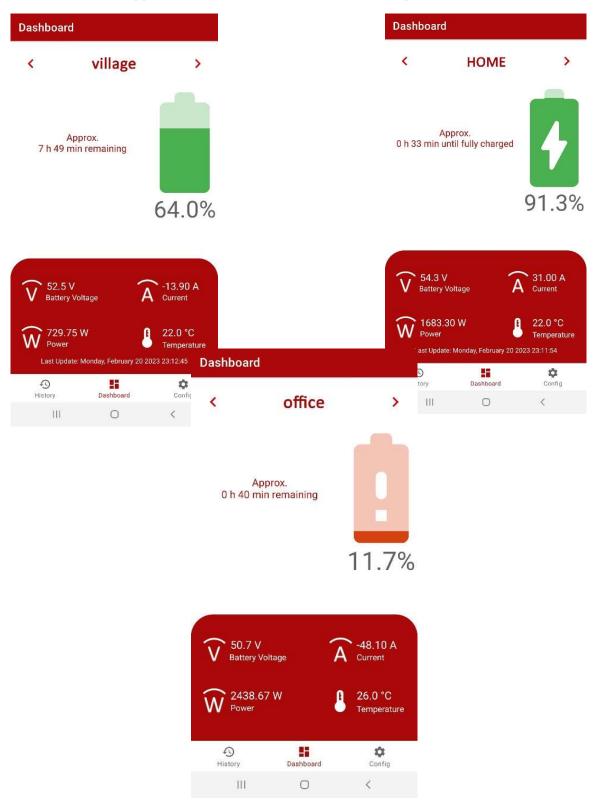

A single press of the activation button will activate.

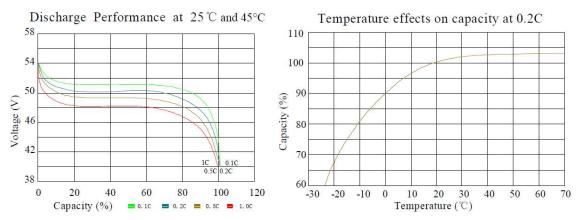


DIP switch settings

When the PACK's are used in parallel, different PACK's can be distinguished by setting the address through the DIPswitch on the interface board. It is necessary to avoid setting the same address. Refer to the following table for the definition of the BMS DIP switch.

Address	DIP switch position						
	#1	#2	#3	#4			
0	OFF	OFF	OFF	OFF			
1	ON	OFF	OFF	OFF			
2	OFF	ON	OFF	OFF			
3	ON	ON	OFF	OFF			
4	OFF	OFF	ON	OFF			
5	ON	OFF	ON	OFF			
6	OFF	ON	ON	OFF			
7	ON	ON	ON	OFF			
8	OFF	OFF	OFF	ON			
9	ON	OFF	OFF	ON			
10	OFF	ON	OFF	ON			
11	ON	ON	OFF	ON			
12	OFF	OFF	ON	ON			
13	ON	OFF	ON	ON			
14	OFF	ON	ON	ON			
15	ON	ON	ON	ON			

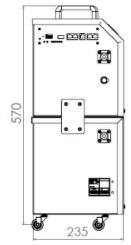

Communication pin-out

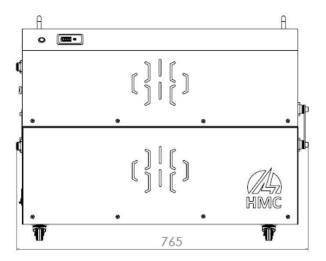

CANuse 8	P8C vertical RJ45 socket	CANuse 8P8C vertical RJ45 socket				
RJ45:Pin	Definition Description	RJ45 引脚	Definition Description			
1, 8	NC	9	CANH			
2 7	NC	10	CANL			
3、6	GND	<mark>11、14</mark>	GND			
4	CANL	12	CANL			
5	CANH	13	CANH			
		15, 16	NC			

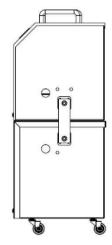
RS485use 8	P8C vertical RJ45 socket	RS485use 8P8C vertical RJ45 socket				
RJ45 Pin	Definition Description	RJ45 Pin	Definition Description			
1、8	RS485-B	9、16	RS485-B			
2、7	RS485-A	10、15	RS485-A			
3、6	GND	11、14	GND			
4, 5	NC	12、13	NC			

HMC WIFI dongle:

The HMC WIFI dongle will help you to monitor your batteries wherever you are using our HMC mobile app, and get easier control of your consumption.




Performance Curve (51.2Vmodel)


Performance may vary depending on but not limited to cell usage and application. If a cell is used outside specifications, performance will diminish.

All specifications are subject to change without notice. All information provided herein is believed, but not guaranteed, to be current and accurate.

Dimensions (mm):

F HMC power solution

